Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746255

RESUMO

Spermatogenesis is a key developmental process underlying the origination of newly evolved genes. However, rapid cell type-specific transcriptomic divergence of the Drosophila germline has posed a significant technical barrier for comparative single-cell RNA-sequencing (scRNA-Seq) studies. By quantifying a surprisingly strong correlation between species-and cell type-specific divergence in three closely related Drosophila species, we apply a simple statistical procedure to identify a core set of 198 genes that are highly predictive of cell type identity while remaining robust to species-specific differences that span over 25-30 million years of evolution. We then utilize cell type classifications based on the 198-gene set to show how transcriptional divergence in cell type increases throughout spermatogenic developmental time, contrasting with traditional hourglass models of whole-organism development. With these cross-species cell type classifications, we then investigate the influence of genome organization on the molecular evolution of spermatogenesis vis-a-vis transcriptional bursting. We first demonstrate how mechanistic control of pre-meiotic transcription is achieved by altering transcriptional burst size while post-meiotic control is exerted via altered bursting frequency. We then report how global differences in autosomal vs. X chromosomal transcription likely arise in a developmental stage preceding full testis organogenesis by showing evolutionarily conserved decreases in X-linked transcription bursting kinetics in all examined somatic and germline cell types. Finally, we provide evidence supporting the cultivator model of de novo gene origination by demonstrating how the appearance of newly evolved testis-specific transcripts potentially provides short-range regulation of the transcriptional bursting properties of neighboring genes during key stages of spermatogenesis.

2.
Nat Ecol Evol ; 7(3): 440-449, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635344

RESUMO

Ageing is a complex biological process that is accompanied by changes in gene expression and mutational load. In many species, including humans, older fathers pass on more paternally derived de novo mutations; however, the cellular basis and cell types driving this pattern are still unclear. To explore the root causes of this phenomenon, we performed single-cell RNA sequencing on testes from young and old male Drosophila and genomic sequencing (DNA sequencing) on somatic tissues from the same flies. We found that early germ cells from old and young flies enter spermatogenesis with similar mutational loads but older flies are less able to remove mutations during spermatogenesis. Mutations in old cells may also increase during spermatogenesis. Our data reveal that old and young flies have distinct mutational biases. Many classes of genes show increased postmeiotic expression in the germlines of older flies. Late spermatogenesis-biased genes have higher dN/dS (ratio of non-synonymous to synonymous substitutions) than early spermatogenesis-biased genes, supporting the hypothesis that late spermatogenesis is a source of evolutionary innovation. Surprisingly, genes biased in young germ cells show higher dN/dS than genes biased in old germ cells. Our results provide new insights into the role of the germline in de novo mutation.


Assuntos
Drosophila , Testículo , Humanos , Animais , Masculino , Drosophila/genética , Mutação , Testículo/metabolismo , Células Germinativas , Envelhecimento/genética
3.
Mol Biol Evol ; 38(6): 2532-2546, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33586767

RESUMO

Studying how novel phenotypes originate and evolve is fundamental to the field of evolutionary biology as it allows us to understand how organismal diversity is generated and maintained. However, determining the basis of novel phenotypes is challenging as it involves orchestrated changes at multiple biological levels. Here, we aim to overcome this challenge by using a comparative species framework combining behavioral, gene expression, and genomic analyses to understand the evolutionary novel egg-laying substrate-choice behavior of the invasive pest species Drosophila suzukii. First, we used egg-laying behavioral assays to understand the evolution of ripe fruit oviposition preference in D. suzukii compared with closely related species D. subpulchrella and D. biarmipes as well as D. melanogaster. We show that D. subpulchrella and D. biarmipes lay eggs on both ripe and rotten fruits, suggesting that the transition to ripe fruit preference was gradual. Second, using two-choice oviposition assays, we studied how D. suzukii, D. subpulchrella, D. biarmipes, and D. melanogaster differentially process key sensory cues distinguishing ripe from rotten fruit during egg-laying. We found that D. suzukii's preference for ripe fruit is in part mediated through a species-specific preference for stiff substrates. Last, we sequenced and annotated a high-quality genome for D. subpulchrella. Using comparative genomic approaches, we identified candidate genes involved in D. suzukii's ability to seek out and target ripe fruits. Our results provide detail to the stepwise evolution of pest activity in D. suzukii, indicating important cues used by this species when finding a host, and the molecular mechanisms potentially underlying their adaptation to a new ecological niche.


Assuntos
Evolução Biológica , Drosophila/genética , Genoma de Inseto , Oviposição , Sensação , Adaptação Biológica , Animais , Sinais (Psicologia) , Drosophila/metabolismo , Feminino , Frutas , Espécies Introduzidas , Seleção Genética , Células Receptoras Sensoriais/metabolismo , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...